Complex Variables

Test 3

Instructions: The usual.

1. Use residues to evaluate the following integrals.
(a)

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+4 x+13\right)^{2}} d x
$$

(b)

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x
$$

2. Use residues to evaluate the following integrals.
(a)

$$
\int_{0}^{\infty} \frac{x \sin (x)}{x^{4}+1} d x
$$

(b)

$$
\int_{0}^{\infty} \frac{\cos (x)-1}{x^{2}+1} d x
$$

3. Show that in polar coordinates, a function u is harmonic exactly when

$$
r \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

4. Suppose that u is non-negative and harmonic on all of \mathbb{C}. Show that u is constant.
5. Suppose f is holomorphic in a region containing the upper half plane $\{z=x+i y \in \mathbb{C}: y \geq 0\}$ and tends to zero as $z \rightarrow \infty$. Then for $z=x+i y \in \mathbb{C}$ with $(y>0)$, we have

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \int_{\infty}^{\infty} \frac{f(t)}{t-z} d t \\
0 & =\frac{1}{2 \pi i} \int_{\infty}^{\infty} \frac{f(t)}{t-\bar{z}} d t
\end{aligned}
$$

Use this to show Poisson's formula for the upper half plane:
If u is harmonic in a region containing $\{z=x+i y \in \mathbb{C}: y \geq 0\}$ and tends to zero as $z \rightarrow \infty$, then for $z=x+i y \in \mathbb{C}$ with $(y>0)$, we have

$$
u(x, y)=\frac{y}{\pi} \int_{-\infty} \infty \frac{u(t, 0)}{(x-t)^{2}+y^{2}} d t
$$

(You can use without proof that u will be the real part of a holomorphic function which tends to zero as $z \rightarrow \infty$.)

